
APEX PLSQL REPORT REGIONS AND
APPS THAT BUILD THEMSELVES
Bill Holtzman and Steve Schreck, National Air Traffic Controllers Association

Introduction
The National Air Traffic Controllers Association (NATCA) is a union organization representing about 15,000 FAA
employees, including mostly air traffic controllers but also engineers, inspectors, financial and medical staff, and others. The
members are spread across the United States in hundreds of locations. As a result, we have a tremendous need for internet-
based productivity tools. But paying contractors for complex and highly-customized web applications is typically out of the
range of our budget.

NATCA discovered Application Express in 2005 just after it was released as HTMLDB 1.6. We immediately found ApEx to
be a very appealing platform because of:

• low barriers to entry,

• the ability to develop applications rapidly,

• tremendous portability,

• the ability to move up the learning curve towards more sophisticated methods,

• the scalability, ruggedness, reliability and integrity of the Oracle database,

• and most importantly the internet-based development environment.

This last feature allows us to build our applications in the tiny cracks in our time as we hold down our regular jobs as
controllers. We program on our breaks at work, while sitting in airports, when our kids are taking gymnastics classes, and
anywhere else that has Wi-Fi! This creates a lifestyle efficiency that has been extremely valuable. Instead of spending the
same amount of time defining and explaining our business processes and writing requirements for a contractor, we are able to
build the apps ourselves, translating our needs directly into code, and at the same time build valuable skills within our
organization.

All of this has made it possible to automate, centralize and merge many of our business processes without the investment of
millions of dollars, providing our local union representatives with productivity tools and information inexpensively. This has
vastly improved the organization from the ground up, making every representative and employee more efficient and
effective. It has allowed them to focus on the core aspects of their jobs: representation, negotiation, and communication.

This paper will review key techniques developed in two of our applications.

GATS – PLSQL Report Regions
One of the major applications we deployed was a grievance tracking system called GATS. Grievances are the bread-and-
butter of the union and each represents a charge against the employer for either failing to adhere to federal regulation or
causing some adverse action to the employee. At present there are hundreds of thousands of open grievance files in GATS.

 One of the core features of GATS is the listing of grievances. These listings evolved into highly customizable presentations
that enable the user to quickly and intuitively make both small-scale and large-scale updates to the data. At the heart of these
listings are PLSQL-generated SQL Report Regions. This paper will review the finer aspects of these regions and the
numerous methods incorporated into these regions to enhance the user experience, provide security and add capabilities.

Survey Junkie – Creating Pages on the Fly
Recently we developed a new application intended to enable non-technical users to develop and deploy surveys directly to
the membership without assistance. This app had to be able to somehow develop itself, creating items and other ApEx
elements at the whim of a relatively untrained user.

www.odtug.com 1 ODTUG Kaleidoscope 2009

Apps that Build Themselves Holtzman

Our solution exploits the fundamental portability of ApEx. An Apex application export file contains code that ApEx reads to
build items, regions, buttons, pages, and all of the other other elements of an application. We reviewed that code and found
procedures such as wwv_flow_api.create_page_item that we could manipulate dynamically to enable the survey author user
to create items. Ultimately we created code to enable the survey author user to create entire pages in the application
containing all of the items, buttons, regions, and other elements to conduct their survey. This paper will review our methods
in this endeavor.

PLSQL Report Regions
Figure 1 shows one of the grievance listings in GATS.

Figure 1. Typical listing of grievances
The user can customize this listing using the options above, and then can perform updates individually or in a multiple
fashion using checkboxes and the fields in the Multi-features section. Almost every field in the listing contains a link to some
action or page, with some of the links as javascript, others as simple column links, and others as manually coded links with
manually coded parameters.

The goal of this display is to present the user with the most customizable and pertinent information in one screen that enables
direct and immediate access to the most commonly used information and functions. The user therefore spends the minimum
amount of time sifting through hundreds of thousands of records and scores of fields within those records and can address the
immediate issue readily. Air traffic controllers adore extreme efficiency so it is necessary to squeeze maximum capability
into the smallest desktop space.

Simple Column Link with Parameters
Figure 2 shows how the EDIT column in the report is defined. This is a simple column link with parameters. Note that the
parameters include both a data field (#GRID#, the primary key for each grievance) as well as plain text and numbers. In this
case the item :P8_RET_PAGE is a hidden item that page 8 uses to return the user to the original page, using a branch whose
target is &P8_RET_PAGE..

www.odtug.com 2 ODTUG Kaleidoscope 2009

Apps that Build Themselves Holtzman

Figure 2. Simple column link for editing grievances
The column link uses the declarative tool that ApEx provides to automate the link creation. This comes in handy for the less
experienced users, for rapid development, and for keeping the application simple and organized.

Manual column link with concatenation
You notice that the NATCA/FAA column in Figure 1 has in some cases two text strings, one of which is a link and the other
plain text. This display cannot be created using the automated column link because that would cause all text in the column to
be a link. To achieve the split effect that provides more visual clarity, the link has to be coded manually into the SQL that
defines the region. The following code accomplishes this.
select '<a href="' || htmldb_util.prepare_URL('f?p=&APP_ID.:8:' || :APP_SESSION ||
':::8:P8_DUP_GRID,P8_RET_PAGE,P8_ARTICLE:' || g.grid || ',32,' ||g.article) || '">' || g.natca ||
'
' || g.faanum || '' "NATCA/FAA" from grievance g

Note how the plain text is formatted through the span tag. Also note the use of the htmldb_util.prepare_URL function. This
function is used to add security to the application. It appends a checksum to the end of the URL and this checksum is used by
ApEx to determine if the entire link is legitimate or has been created by a user attempting to tamper with the application. This
is only required because of the manual column link. Otherwise, ApEx would provide this checksum automatically via
internal processes when the developer has enabled session state protection declaratively in the Shared Components section of
the development environment.

Manual javascript link
The Grievance Regarding column in Figure 1 is a link to provide a pop-up window with a printable version of the grievance.
Since this field also contains plain, non-linked text, the link is again written into the SQL as follows:
select '[BU: ' || nvl(b.buid, 'None') || '] '<a href="javascript:myPopUp(''' ||
htmldb_util.prepare_URL('f?p=&APP_ID.:9:' || :APP_SESSION || '::::P9_GRID:' || g.GRID) || ''')">' ||
g.topic || '' || gr_groupid(g.grid) "Topic" from grievance g, gr_bu b where g.bu_id = b.id (+)

The htmldb_util.prepare_URL function is again used to append a checksum to the URL and prevent tampering. Notice also
that plain text fields exist both before and after the linked string. This helps present the maximum amount of information to
the user in the smallest space. The ability to render this column with both plain text and hypertext gives it a more organized
look that is required to avoid overwhelming the user with information.

Composite data column
Another method for maximizing the use of space in the report is the use of conditional fields that display different types of
data In the previous two examples, plain text was concatenated with hypertext. But there’s no reason to limit the options of

www.odtug.com 3 ODTUG Kaleidoscope 2009

Apps that Build Themselves Holtzman

what can be displayed. In the column labeled “Date subm’d or days left”, as shown again in Figure 3, a conditional
combination of date

s oth decode and case functions.

bmit

CA

l and date_rec_1 is null then '<img src="/c/greenN.gif"
lied at the E1 level">'

y ' ||

DD/YY') || '">'

to_char(g.date_sub_2, 'MM/DD/YY')), 'Closed') "DATE_SUB" from grievance g

te

e query and might be better
dition, once you introduce

g method will typically fail.

ike to see the grievances sorted by any of the following criteria:

 the employer,

ished by converting the entire SQL Report Region to a PLSQL-generated
QL Report Re lves simply
selecting the

 Report Region

s, numbers and images can be displayed based on the data.

 lengthy query is used using bplay, aTo generate this di
select decode(g.status_id, 1, decode(g.date_sub_2, null, trunc(g.u_action_2) -
trunc(sysdate) || ' ' ||
case
when (g.u_action_2 - sysdate) > 7 then '<img src="/c/greenN.gif" alt="NATCA must su
this by ' ||
to_char(g.u_action_2, 'MM/DD/YY') || '">'
when (g.u_action_2 - sysdate) > 3 then '<img src="/c/yellowN.gif" alt="NATCA must
submit this by ' ||
to_char(g.u_action_2, 'MM/DD/YY') || '">'
when (g.u_action_2 - sysdate) > 0 then '<img src="/c/redN.gif" alt="NATCA must submit
this by ' ||
to_char(g.u_action_2, 'MM/DD/YY') || '">'
when (g.u_action_2 - trunc(sysdate)) = 0 then '<img src="/c/red_today.gif" alt="NAT
must submit this today">'

 nulwhen g.u_action_2 is
FAA has not repalt="

else '<img src="/c/past.gif" border="0" alt="NATCA failed to submit this b
to_char(g.u_action_2,
'MM/
end,

Figure 3. Composi
data column

Use of PLSQL
It becomes apparent that nested decodes and case clauses add a great deal of complexity to th
handled by PLSQL. There are performance reasons to switch to PLSQL-generated SQL. In ad
different types of data into a column any kind of simple sortin

For example, the user might l

• those requiring the most immediate action first,

• grievance number,

• those requiring immediate action by

• date submitted, or

• other complicated sorting schemes.

Since the displayed columns do not neatly conform to some of the sorting schemes, it becomes necessary to write the
ORDER BY clause dynamically. This is accompl
S gion. The first step in this process is easy thanks to the declarative ApEx environment. It invo

region type as shown in Figure 4. re

Figure 4. Converting to a PLSQL-generated SQL

www.odtug.com 4 ODTUG Kaleidoscope 2009

Apps that Build Themselves Holtzman

Ne ed as PLSQL to generate the appropriate SQL. A simple example of this process is shown.
Not syntax to clarify the string that is to be generated.

32767);

e
region source into a PLSQL block mostly involves inserting the existing query into the 10g quotes and then building the

sub_2) nulls

lls last, substr(g.natca,1,2),
ca,4,3), natcasub !';

ORT = 5 then p_sql := p_sql || q'! order by g.date_sub_2 nulls first, u_action_2 !';

e user typically can choose from a large number of filtering options. Without
ach of these options must be included in the SQL as a WHERE clause even if the criteria is all-

_ID) or (:P32_FACILITY_ID = 0 and

d :P32_NF = 2) or (:P32_NF =

tered values for more than two or three of the fields, so that every query generated by
at is used to generate the

' !';

xt, the code must be redesign
e of the 10g quotinge the us

declare
 varchar2(p_sql

begin
p_sql := q'! select grid from grievance !';
return p_sql;
end;

In this case the simple query select grid from grievance will be generated by this PLSQL. The process of converting th
SQL
code to append various WHERE and ORDER BY clauses to the resulting SQL. In the current example the code looks like
this:
case
when :P32_SORT = 1 then p_sql := p_sql || q'! order by trunc(g.reply_by_2), trunc(g.date_
last,
trunc(g.u_action_2) nulls last, substr(g.natca,4,3), g.natcasub !';
when :P32_SORT = 2 then p_sql := p_sql || q'! order by trunc(g.date_sub_2) nulls first,
trunc(g.u_action_2)

ubstr(g.natca,4,3), g.natcasub !'; nulls last, trunc(g.reply_by_2), s
when :P32_SORT = 3 then p_sql := p_sql || q'! order by substr(g.natca,1,2), substr(g.natca,4,3),
natcasub !';

ORT = 4 then p_sql := p_sql || q'! order by g.faanum nuwhen :P32_S
atsubstr(g.n

when :P32_S
when :P32_SORT = 6 then p_sql := p_sql || q'! order by g.rep !';
else null;
end case;

By using PLSQL we are able to provide the user with sorting schemes of virtually any level of complexity.

The other benefit of using PLSQL is that the ability to selectively include or exclude various WHERE clauses gives a
performance boost. In the GATS application, th
a PLSQL-generated query, e
inclusive. This clump of code looked like this:
where g.gr_status = 2
and g.status_id = p.id
and ((g.faanum like '%'||:P32_FAANUM||'%' and :P32_FAANUM is not null) or :P32_FAANUM is null)
and ((:P32_FACILITY_ID != 0 and g.facility_id = :P32_FACILITY
(g.facility_id in (select id from gr_facility_lookup where region_id = (select y.region_id from
gr_facility_lookup y, gr_emp z where upper(z.username) = :APP_USER and z.facility_id = y.id)) or
g.facility_id = 3)))
and (g.status_id = 1 or g.close_date > sysdate - :P32_DAYS)

te_sub_2 is null anand ((g.date_sub_2 is not null and :P32_NF = 1) or (g.da
0))
and g.status_id != 2
and (:P32_REP is null or lower(g.rep) like '%' || lower(:P32_REP) || '%')
and (:P32_NATCA is null or upper(:P32_NATCA) = g.natca)
and (:P32_GRIEVANT is null or upper(g.grievant) like '%'||upper(:P32_GRIEVANT)||'%')
and (:P32_TOPIC is null or lower(g.topic) like '%' || lower(:P32_TOPIC) || '%')

By using PLSQL, these clauses can all be removed unless the user has entered some value for any of the filter fields. In
almost no case will the user have en
PLSQL will include significantly fewer WHERE clauses. Here is an example of the PLSQL th

uses: where cla
if :P32_REP is not null then

 p_sql || q'! and lower(g.rep) like '%' || lower($P32_REP) || '%p_sql :=
end if;
if :P32_NATCA is not null then
p_sql := p_sql || q'! and g.natca like '%'||upper($P32_NATCA)||'%' !';
end if;

www.odtug.com 5 ODTUG Kaleidoscope 2009

Apps that Build Themselves Holtzman

So if the user hasn’t entered anything into either of these two text field page items, there will be no WHERE clause in the
SQL that generates the region. Upon close inspection, you notice that a $ has been substituted where there shou
Within PLSQL the colon indicates a bi

ld be a colon.
nd variable, so the colon must be substituted back into the SQL after the string has

ic column now looks like this:
$'

:

ion. Since the

 to our organization to find ways to keep track of

In addition, users are directed to a site outside of your system and they cannot use an existing login to access the system. If
rity is limited since the identity of the user is not assured. As is always the case,

,
 system in-house

s

y it was clear that our road to glory was going to be an automated tool.

lank pages. For

questions, the label and
e label for the text items. Using substitution strings and a query for the select list

uthor extremely limited capability.

author needed the ability to create new items. If you poke
ill find PLSQL like the following:

_PAGE',

t_processing => 'REPLACE_EXISTING',

S',

been constructed.

So the code to create SQL for the Top
p_sql := p_sql || q'! '[BU: ' || nvl(b.buid, 'None') || '] <a ref="javascript$myPopUp(''f?p=&APP_ID.$9
|| $APP_SESSION || '$$$$P9_GRID$' || g.GRID || ''')" &F168_PRINT.>' || g.topic || '' ||
gr_groupid(g.grid) "Topic", !';

The $ is replaced at the end of the PLSQL block
return replace(p_sql,'$',':');

When the page is rendered the PLSQL runs and creates the SQL, and then the SQL is used to create the reg
region contains the same columns every time, the Report Attributes tab is still used to format the columns in the display,
including everything from date formats to LOVs to column links.

Apps that Build Themselves
With 15,000 members spread out over 50 states and beyond, it’s important
both attitudes and activities at the ground level. Surveying is a key part of our strategy to accomplish this.

In the past, we used inexpensive subscription tools like Survey Monkey. These allow the user to create surveys and then
deploy via email or publication of a unique URL. The limitations of these tools are that they are not integrated with the
organization’s database and they exist outside of the organization’s IT system. As a result, some of your internal data –
names, email addresses, and the data itself – are exposed to a third party.

you make the survey public, the data integ
having direct access to the code behind the system allows far greater control including advanced validation of user input
custom email functions to users, email notification of specific results, etc. Another advantage of bringing the
is the ease with which survey authors can select recipients based on internal criteria such as organizational roles or acces
levels.

Development of the concept
Our original intent was to actually build surveys one by one. It didn’t take long to realize that this was a labor intensive
method. Having seen Survey Monke

If you hold the survey author to a very rigid format, you can build an app that uses existing items on b
instance, you might have a page with 6 items. Two of these are radio buttons with yes-no answers, two are select items, and
two are text fields. On the survey author page, you enable the author to enter the label for the yes-no
answers for the select list items, and th
answers, you can create the survey.

Of course this is a woefully inadequate method since it gives the a

In order to give the author maximum flexibility, we realized the
around in the application export file from one of your apps you w
wwv_flow_api.create_page_item(

245719266 + wwv_flow_api.g_id_offset, p_id => 6005523
 p_flow_id => wwv_flow.g_flow_id,
 p_flow_step_id => 1,
 p_name =>'P1_PREVIOUS

_type => 'VARCHAR', p_data
 p_accep
 p_item_sequence => 20,
 p_item_plug_id => 72280136279022072+wwv_flow_api.g_id_offset,
 p_use_cache_before_default => 'YE
 p_item_default_type => 'STATIC_TEXT_WITH_SUBSTITUTIONS',
 p_source_type => 'STATIC',
 p_display_as => 'HIDDEN',
 etc.

www.odtug.com 6 ODTUG Kaleidoscope 2009

Apps that Build Themselves Holtzman

We decided to investigate whether we could insert ApEx export code into a page process to allow the app to build new page
elem

Initi I.
Wh
page of
thes
p_id => 6005515200719266 + wwv_flow_api.g_id_offset,

ocess, etc. has an ID value. Since every aspect of an ApEx application is stored in the

ue is simply the primary key in that ta d importing applications,
vention for assigning the value of the ID field. For our purpose, however – to simply obtain an

e ID for this row – we can pull a value from the internal ApEx sequence:

,

apex_activity_log, you will see this field
ps by it.

p_fl

developer in the page item editor.
',

rameter
ect our application.

p_ac

p_item_plug_id => 72280136279022072+wwv_flow_api.g_id_offset,

he ID of the region selected in the page item editor. In

p_use_cache_before_default => 'YES',

tion in the source section of the page item editor. The two options are “Always, replacing

ATIC_TEXT_WITH_SUBSTITUTIONS',

 and

 an ApEx feature that helps to preclude over-writing any
other ApEx element during an import from another schema. We have no need for it since we are operating within a schema.

ents at the request of users, on the fly.

al testing showed it could be done. We had to understand each of the parameters of the various procedures in the AP
enever there was a question, it was a fairly simple matter to create a page item (branch, button, etc.) normally, export the
 and then see how each change was translated into parameters used by the API. The following is a discussion of some

e:

Every page, item, branch, button, pr
database, one would assume that a page item is represented in the database as a row in a table, and all of the other
parameters are columns. This ID val ble. For exporting an
ApEx has its own con
available value to use as th
p_id => wwv_flow_id.next_val

p_flow_id => wwv_flow.g_flow_id

Most will recognize this as the ApEx application ID. When you query the
and will recognize your ap
ow_step_id => 1,

Most will also recognize this parameter as the page ID.
p_name => 'P1_PREVIOUS_PAGE',

The name of the item as entered by the
p_data_type => 'VARCHAR

The data type of the item seems to default universally to VARCHAR. We found that we could simply leave this pa
out of our process and it would default to null. This did not seem to aff
cept_processing => 'REPLACE_EXISTING',

We take the default on this parameter.
p_item_sequence => 20,

This is simply the rendering sequence number of the item as entered by the developer in the page item editor.

Page plug is an ApEx name for a region. So this value must be t
our case, the region is constructed on the fly and we control its ID.

This is the “Source Used” op
any existing value in session state” and “Only when current value in session state is null”. The value of “No” in this
parameter corresponds the the former option, and “Yes” the latter.

p_item_default_type => 'ST

This is the value of “Default Value Type” in the page item editor. The other options are PL/SQL Function Body
PL/SQL Expression.

p_source_type => 'STATIC',

This is the value of “Source Type” in the page item editor. Other options include SQL Query, PLSQL Function Body,
etc.

p_display_as => 'HIDDEN',

The “Display As” field in the page item editor. Other options include Text Field, Select List, Radio Group, etc.

The value wwv_flow_api.g_id_offset that appears frequently is

www.odtug.com 7 ODTUG Kaleidoscope 2009

Apps that Build Themselves Holtzman

These are just a few of the parameters that must be understood. By continuing in this process of defining each parameter used
ase needed to program our application to build ApEx elements itself.

 elements of an ApEx page, we considered the general configuration of our app to
ed a configuration that specifically allowed the base user access only to those

something like this:

rvey authors and survey takers. An author could also be a taker.

lect takers of each of their surveys from the membership

 provided, access to which could be author-only or authors and takers.

ctive email capability for authors, password change
t out of surveys selectively by author, and other NATCA-specific features.

defined by the user.

was to figure out how to do that!

r bit of tinkering to get comfortable, but
enerate a new page. We used it to generate new

,
ow.g_flow_id,

_WITH_SUBSTITUTIONS',
RST_ITEM',

h24miss => '',

nly other parameter of interest
e specifies the authorization scheme to be applied to this new page. To supply this value,

bers of the authorizations from an export file and insert the appropriate value for each

by the API’s, we can create the knowledge b

Once we learned we could create various
allow for different levels of access. We want
surveys they had been designated to take by author-level users.

Requirements
Our requirements were

• All users are authenticated.

• Two user levels, su

• Authors have the ability to individually or collectively se
database.

• Authors have a versatile method for selecting different classes of members.

• Authors can create survey questions of type yes/no, text field, text area, and multiple choice, both single and
multiple answer.

• Photos can be associated with multiple choice answers.

• All users are provided access to all of the current surveys for which they have been selected.

• Some kind of result reporting must be

Various other requirements included automated notifications, sele
capability, the ability to op

Given these requirements, especially those restricting access, it seemed apparent that the most natural way to do this was to
create a new page for each survey. Onto each page the app would create regions, items, buttons, branches, and processes to
accomplish the survey as

The only thing left at this point

Creating a Page
If you review an ApEx export file, you’ll find code that creates pages. It takes a fai
this code can be modified and used in a page process in your ApEx app to g
survey pages as follows.
wwv_flow_api.create_page(
 p_id => p_page
 p_flow_id => wwv_fl
 p_tab_set => '',
 p_name => 'Survey: ' || p_survey_name,
 p_step_title => '',

e 1:'|| p_survey_name, p_step_sub_title => 'Pag
 p_step_sub_title_type => 'TEXT
 p_first_item => 'NO_FI
 p_include_apex_css_js_yn =>'Y',
 p_help_text => ' ',
 p_html_page_header => ' ',
 p_step_template => '',
 p_required_role => p_taker_auth + wwv_flow_api.g_id_offset,
 p_required_patch => null + wwv_flow_api.g_id_offset,
 p_last_updated_by => '',
 p_last_upd_yyyymmddh
 p_page_is_public_y_n => 'N',
 p_page_comment => '');

The value p_page is generated by the internal ApEx sequence: wwv_flow_id.next_val. The o
here is p_required_role. This valu
we simply obtained the internal ID num
page as it is constructed.

www.odtug.com 8 ODTUG Kaleidoscope 2009

Apps that Build Themselves Holtzman

Creating Regions, Items, Buttons, and Branche
ocess to create a

s
region on the new page.

_name||'</h1>',
name||'</h1>',

8936+ wwv_flow_api.g_id_offset,

',

M#',

LINKS',

 => '',

ustomized =>'0',

aining metadata on the application, including the page numbers and names of
value for p_page, we query that table, obtaining the highest page number value, and

is added using the following code.

set,

he items are a bit more complicated. Each has different attributes assigned by the user. Those attributes are stored in the
e answers to multiple choice
 radio items. The item names are

 the generated survey and yy is the question

, question_num, question_type, question_text
urvey_id = :P6_SURVEY_ID

c2 is select id, answer

Next up is a region. This code is used in our page pr
vId := wwv_flow_id.next_val;
p_region_id := vId;
wwv_flow_api.create_page_plug (

, p_id => vId
 p_flow_id => wwv_flow.g_flow_id,

, p_page_id => p_page
 p_plug_name => '<h1>'||p_survey

||p_survey_ p_region_name =>'<h1>'
 p_plug_template => 19126095677546
p_plug_display_sequence => 10,

 p_plug_display_column => 1,
 p_plug_display_point => 'BEFORE_SHOW_ITEMS
 p_plug_source => null,

IC_TEXT', p_plug_source_type => 'STAT
 p_translate_title => 'Y',
 p_plug_display_error_message => '#SQLERR

 p_plug_query_row_template => 1,

RY_COLUMNS', p_plug_query_headings_type => 'QUE
 p_plug_query_num_rows_type => 'NEXT_PREVIOUS_

_max => 500, p_plug_query_row_count
 p_plug_column_width
 p_plug_query_show_nulls_as => ' - ',
 p_plug_display_condition_type => '',
 p_pagination_display_position =>'BOTTOM_RIGHT',
 p_plug_c
 p_plug_caching => 'NOT_CACHED',
 p_plug_comment=> '');

We maintain a table in the database cont
e existing survey pages. To determine th

add one.

Every survey page needs a button, and one
vId := wwv_flow_id.next_val;
wwv_flow_api.create_page_button(
 p_id => vId,
 p_flow_id => vAppId,

ge, p_flow_step_id => p_pa
 p_button_sequence => 10,
 p_button_plug_id => p_region_id + wwv_flow_api.g_id_off
 p_button_name => 'SUBMIT',
 p_button_image_alt => 'Submit',
 p_button_position => 'TOP_AND_BOTTOM',
 p_button_alignment => 'LEFT',
 p_button_redirect_url => '',
 p_required_patch => null + wwv_flow_api.g_id_offset);

T
table survey_order_questions and are retrieved when the items are created. Meanwhile, th

s well to create thequestions are stored in the table survey_order_ans. These are retrieved a
he format Pxxx_Qyy, where xxx is the page ofstandardized to conform to t

sequence number.

declare
cursor c1 is select question_id
from survey_order_questions where s
rder by question_num; o

cursor
from survey_order_ans where question_id = p_question_id
order by id;

5);p_page number(
p_item_name varchar2(100);
_seq_val number(3,0) := 20; p

www.odtug.com 9 ODTUG Kaleidoscope 2009

Apps that Build Themselves Holtzman

begin
select max(page) into p_page -- get the last page used
from survey_order_list;
p_page := p_page + 1;
[code to create page, regions, etc.]

for a1 in c1 loop
p_item_name := 'P' || p_page || '_

 -- item code creation begins
' || p_current_qnum; -- item names like P202_Q1, P202_Q2, etc.

 -- question_type 1 is multiple choice

| ',';

-- determined in region creation code

tion_num||'. '||a1.question_text||'',

ROUP',

 => 'STATIC2:'||p_ans,
 => 1,

int with branches is that they need to include the value of
rt of

is no

n ID. What led us to the problem was that when we accessed the page as
 unexpected logouts. Only by creating an export of the generated page can

n string.

 to prevent ApEx from making the

'$SESSION.';

insert into SURVEY_EMP_ANS (QUESTION_ID, EMP_ID, ANSWER) values (1234, f_emp_id(:APP_USER), :P212_Q1);

Q
p_question_id := a1.question_id;
 if a1.question_type = 1 then
 for a2 in c2 loop
 p_ans := p_ans || trim(a2.answer) || ';' || a2.id |
 end loop;
 p_ans := rtrim(p_ans,',');
 vId := wwv_flow_id.next_val;
 wwv_flow_api.create_page_item(
 p_id => vId,
 p_flow_id => vAppId,
 p_flow_step_id => p_page,
 p_name => p_item_name,
 p_item_sequence => p_seq_val,

id, p_item_plug_id => p_region_
 p_use_cache_before_default => 'NO',
 p_prompt => ''||a1.ques

ql, p_source => p_ans_s
 p_source_type => 'QUERY',

 => 'RADIOG p_display_as
 p_lov

lov_columns p_
 p_label_alignment => 'ABOVE',
 p_field_alignment => 'LEFT');
 else
 [other code for different item/question types]
 end if;
_seq_val := p_seq_val +10; p

end loop;

Buttons and branches are created in similar fashion. A sticking po
SESSION. But if your page process includes the string &SESSION., then the session ID will be substituted and become pa
the branch. With your branch action parameter within the branch create procedure set to this:
p_branch_action=> 'f?p=&APP_ID.:10:&SESSION.',

You will see that when the branch is created, ApEx will actually run the following:
p_branch_action=> 'f?p=&APP_ID.:10: 4676970450940099',

In this case, the hard-coded session ID is the value taken from the session in which the user activated the process. This
situation was tricky to detect because when you examine the branch that is created on the newly-generated page, there
indication of the presence of a hard-coded sessio

sers of the app, we would frequently experienceu
you see the hard-coded value instead of the substitutio

o get the substitution string into the actual branch, a substitution character is usedT
substitution prematurely:
p_session varchar2(100) :=

The character is replaced when the branch is created:
p_branch_action=> 'f?p=&APP_ID.:10:' || replace(p_session,'$','&'),

Creating the Process
The PLSQL to create the page process was created by working backwards. Survey responses are recorded in the table
SURVEY_EMP_ANS, whose three columns are QUESTION_ID, EMP_ID, and ANS_ID. So the page process has to either insert a new
row or update one (if the user is revisiting their answer). If the page had been created manually, the process might look like
this:

www.odtug.com 10 ODTUG Kaleidoscope 2009

Apps that Build Themselves Holtzman

where f_emp_id is a function that retrieves the user’s EMP_ID and item P212_Q1 is question 1 on page 212. The tricky part
here is determining what answer the user had supplied, because this process is being generated by another process when the
survey is published. We wanted to generate on each survey page a single cursor that would loop through all of the questions

s the user had supplied, and insert or update those answers into the table SURVEY_EMP_ANS.

ey pages, where the c1
 use of a standardized item name comes in handy here.

'); '

m;

_ans (question_id, emp_id, answer) values
id, p_page_item);

 update survey_emp_ans set answer = p_page_item

+ 1;

 looks like this:

e then performs the insert or update.

 author publishes the survey. The publishing page therefore has to have

10) ||
) ||

 ||

) ||
chr(10) ||

chr(10) ||

 p_q_num || ''''''); '' '

age_item;' || chr(10) ||

in that survey, read the answer

Again working backward, we built the following code to be the core of the submit process on surv
cursor loops through the questions in the selected survey. Note that the
for a1 in c1 loop
 l_sql := 'BEGIN '
 || ' :l_val := v(''P' ||:APP_PAGE_ID|| '_Q'||p_q_num || ''
 || 'END;';

TE IMMEDIATE l_sql USING OUT p_page_ite EXECU
 select count(*) into p_count from survey_emp_ans
 where question_id = a1.question_id and emp_id = p_empid;

nt = 0 then if p_cou
 insert into survey_emp

question_id, p_emp (a1.
 else

 where question_id = a1.question_id and emp_id = p_empid;
 end if;
 p_q_num := p_q_num
 end loop;

The EXECUTE IMMEDIATE SQL that would run when the user submits the page would then
BEGIN
:l_val := v('P208_Q1');
END;

This retrieves the user’s answer. The remaining cod

The above process must be generated when the survey
a process to generate that process. Here it is:
p: = p || 'declare' || chr(10) ||

| 'p_survey_id number(5,0);' || chr(10) |
 'p_empid number(7,0);' || chr(10) ||

ar2(4000);' || chr('p_page_item varch
'p_q_id number(5,0);' || chr(10
'p_q_num number(3,0):= 1;' || chr(10)
'p_max_q_num number(3,0);' || chr(10) ||
'l_sql VARCHAR2(1000);' || chr(10) ||
'p_count number(1);' || chr(10) ||
'' || chr(10) ||
'cursor c1 is' || chr(10

d' || 'select question_i
'from survey_order_questions' || chr(10) ||

 p_survey_id' || chr(10) || 'where survey_id =
'order by question_num;' || chr(10) ||
'' || chr(10) ||
begin' || chr(10) || '

'' || chr(10) ||
id(:APP_USER);' || chr(10) || 'p_empid := gr_emp

'' || chr(10) ||
into p_survey_id' || 'select survey_id

'from survey_order_list' || chr(10);

p:=p || 'where page = :APP_PAGE_ID;' || chr(10) ||
'' || chr(10) ||

oop' || chr(10) || ' for a1 in c1 l
'' || chr(10) ||

BEGIN ''' || chr(10) || ' l_sql := ''
' || '' :l_val := v(''''P'' || :APP_PAGE_ID || ''_Q'' ||
|| chr(10) ||

''END;'';' || chr(10) || ' ||
'' || chr(10) ||

l_sql USING OUT p_p' EXECUTE IMMEDIATE

www.odtug.com 11 ODTUG Kaleidoscope 2009

Apps that Build Themselves Holtzman

www.odtug.com 12 ODTUG Kaleidoscope 2009

|

nswer) values' || chr(10) ||
;' || chr(10) ||

s set answer = p_page_item ' || chr(10) ||
| chr(10) ||

pp the ability to “build itself”.

r app can create new pages and new regions within those pages. Into these regions our app can

res

n – fortunately without much pain – was that if your app generates its own pages, you don’t want to

 never been of greater value for us.

venient tool, and developers with just modest experience in SQL and PLSQL can really
ore advanced users the power of ApEx can be extended

e possibilities of PLSQL-generated Report Regions. We looked at how these regions

 mixtures of data types and images

selves.
No doubt, ApEx itself uses this code to generate your apps when you are building them. So we leveraged the legendary

 itself” – to build apps that can be used to build other apps. ApEx itself is an
example of such an app, if that isn’t too much circular thinking for you!

powerful capabilities to the ApEx developer.

• Bill Holtzman at skyworker@comcast.net or 703-403-0139

• Steve Schreck at stlsjschreck@natca.net or 636-399-4549

'' || chr(10) ||
' select count(*) into p_count from survey_emp_ans ' || chr(10) ||

 chr(10) |' where question_id = a1.question_id and emp_id = p_empid;' ||
'' || chr(10) ||
' if p_count = 0 then' || chr(10) ||
' insert into ';

p:=p || 'survey_emp_ans (question_id, emp_id, a
' (a1.question_id, p_empid, p_page_item)
' else' || chr(10) ||

 update survey_emp_an'
' where question_id = a1.question_id and emp_id = p_empid;' |
' end if;' || chr(10) ||
'' || chr(10) ||
' p_q_num := p_q_num + 1;' || chr(10) ||
' end loop;' || chr(10) ||
'end;';

This process is the final major piece in giving our a

At the request of the user, ou
insert page items containing user-defined surveys questions. It can create the button to enable survey takers to submit their
answers, and it can create the process to record the data in each survey to the database. It can also create the branch that fi
after the user submits their answers to the survey.

Finishing Touches
There are a number of issues that are not included here for the sake of brevity but are worth mentioning. These include the
generation of a results page, a process to create validations, securing the author-side of the app from the rest of the users
through branching and conditions, and the mechanics of choosing survey recipients.

One lesson we did lear
import the whole app into prod from dev. After we did this, we realized we had over-written some of our users’ surveys. It
doesn’t take a rocket scientist to figure out that the pages that had been created in the prod instance would disappear! The
ability to export and import individual pages in ApEx has

Conclusions
ApEx is a powerful, versatile and con
get going in a hurry. What we tried to show in this paper is that, for m
greatly through the use of the two approaches described.

In the earlier section, we explored th
could be elaborately customized to:

• Eliminate SQL at runtime that might hinder performance

• Allow for complex sorting

• Make it possible to generate composite report columns containing

In the latter section, we looked at how to use ApEx’ own import-export code to enable your apps to “multiply” them

characteristic of ApEx - that it is “built in

Both of the approaches described in this paper provide important and

You can contact the authors if you like:

